
Best of Both Worlds: Ex-Ante and Ex-Post Fairness in Resource

Allocation

Rupert Freeman
University of Virginia

FreemanR@darden.virginia.edu

Nisarg Shah
University of Toronto

nisarg@cs.toronto.edu

Rohit Vaish
Rensselaer Polytechnic Institute

rohitv@alum.iisc.ac.in

Abstract

We study the problem of allocating indivisible goods among agents with additive valuations.
When randomization is allowed, it is possible to achieve compelling notions of fairness such as
envy-freeness, which states that no agent should prefer any other agent’s allocation to her own.
When allocations must be deterministic, achieving exact fairness is impossible but approximate
notions such as envy-freeness up to one good can be guaranteed. Our goal in this work is to
achieve both simultaneously, by constructing a randomized allocation that is exactly fair ex-ante
and approximately fair ex-post. The key question we address is whether ex-ante envy-freeness
can be achieved in combination with ex-post envy-freeness up to one good. We settle this
positively by designing an efficient algorithm that achieves both properties simultaneously. If
we additionally require economic efficiency, we obtain an impossibility result. However, we show
that economic efficiency and ex-ante envy-freeness can be simultaneously achieved if we slightly
relax our ex-post fairness guarantee. On our way, we characterize the well-known Maximum
Nash Welfare allocation rule in terms of a recently introduced fairness guarantee that applies
to groups of agents, not just individuals.

1 Introduction

Allocating resources in non-monetary environments is commonplace in social institutions. Es-
tates must be divided among beneficiaries, jointly held assets split between partners in a divorce,
tasks assigned to employees, and educational resources distributed among public schools. Ver-
sions of this resource allocation problem - ranging from applied to theoretical models - have been
studied in various research communities including mathematics, economics, operations research,
and computer science. A central concern in these settings is fairness: how can these decisions
be made so as to not systematically disadvantage individuals or groups of people?

In this work, we consider a fundamental problem in fair resource allocation. A set of m
indivisible goods are to be divided among a set of n agents who have different preferences over
the goods. An agent’s preferences are expressed through a valuation function that assigns a value
to every subset of the goods. We restrict ourselves to the case of additive valuation functions, in
which each agent has a value for each good and her value for a subset is simply the sum of her
values for the goods in the subset. Additive valuations ignore complementary and substitutive
effects that may occur in practice, but they are an appealing tradeoff between simplicity and
expressiveness. For instance, the Adjusted Winner procedure [19] that is commonly used in
dispute resolution assumes additive valuations, as does the popular fair division website Spliddit
(http://spliddit.org).
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A particularly appealing notion of fairness is that of envy-freeness (EF) [31], which requires
that no agent values the resources allocated to another agent more than the resources allocated
to herself. When allocations are deterministic, it is not always possible to achieve envy-freeness;
imagine two agents liking a single good, which must be given to one of them, leaving the other
envious. The fundamental unfairness present in deterministic allocations motivates the use of
randomized mechanisms instead. Indeed, many mechanisms used in practice exploit lotteries
to, for example, determine a priority ordering. With the power of randomization, it is easy to
achieve ex-ante envy-freeness: if a single agent is chosen uniformly at random and then allocated
all the goods, no agent envies any other in expectation. However, this allocation induces a large
amount of envy ex-post, since one agent receives everything and all others receive nothing.

While we cannot eliminate ex-post envy, a significant body of work has focused on defining
and achieving approximate notions fairness for deterministic allocations [18]. One compelling
notion is envy-freeness up to one good (EF1) [22, 39], which requires that the envy of any agent
towards another agent can be eliminated by the removal of at most one good from the envied
agent’s allocation. A deterministic EF1 allocation can always be achieved. For instance, it
is known that the round-robin method — where the agents choose goods one at a time in a
repeating fixed order — is guaranteed to output an EF1 allocation. Agents who come later in
the ordering may envy those who come early, but only up to a single good. One might hope that
if the order of the agents was chosen randomly among the n! possible orderings then ex-ante
envy-freeness could additionally be achieved, but this is not the case (we present an example in
Section 3). Other methods of achieving deterministic EF1 allocation are known [10, 21, 24, 39],
but do not naturally lend themselves to exploiting randomization.

This motivates a natural question. Can we retain envy-freeness up to one good as an ex-post
guarantee, and simultaneously obtain (exact) envy-freeness ex-ante? In other words, can we
always randomize over EF1 allocations such that the resulting randomized allocation is EF?
In yet other words, does the polytope of EF allocations intersect with the convex hull of EF1
allocations? We show that the answer to this natural and elegant question is yes. More generally,
we study various combinations of ex-ante and ex-post fairness and efficiency guarantees, and
identify combinations that can (and cannot) be achieved simultaneously. Our constructive
results yield efficient algorithms; these improve upon prior algorithms which provide either only
ex-ante or only ex-post guarantees, thus paving the way for fairer resource allocation in practice.

1.1 Our Results

Our main result is the development of a novel algorithm, Recursive Probabilistic Serial, that
produces an ex-ante envy-free (EF) distribution over deterministic allocations that each satisfy
envy-freeness up to one good (EF1). Our algorithm is an adaptation of the classic Probabilistic
Serial (PS) algorithm of Bogomolnaia and Moulin [16] that inherits much of the desirable
behavior of PS (in particular, ex-ante envy-freeness), while also allowing a simple and natural
decomposition over EF1 allocations. While a näıve version of our algorithm yields a distribution
over a possibly-exponential number of deterministic allocations, we show that a support-size
polynomial in the number of agents and goods is sufficient, thus yielding an efficient variant.

In addition to ex-ante EF and ex-post EF1, one may want to achieve the economic efficiency
notion of Pareto optimality, which states that it should be impossible to find an allocation that
improves some agent’s utility without reducing any other agent’s. In Section 4 we show that
it is impossible to achieve ex-ante Pareto optimality (that is, with respect to the randomized
allocation) in conjunction with ex-ante EF and ex-post EF1. However, in Section 5 we show
that strong ex-ante guarantees — in terms of both fairness and economic efficiency — can be
achieved if we are willing to compromise on the ex-post guarantee. In particular, we are able
to achieve ex-ante group fairness (GF) [28], which generalizes both envy-freeness and Pareto
optimality, in conjunction with two ex-post fairness properties that are incomparable but are
both implied by EF1: proportionality up to one good (Prop1) [27] and envy-freeness up to one
good more-and-less (EF1

1) [9]. Our algorithm uses a rounding of the well-known maximum Nash
welfare (MNW) allocation, and in Section 6, we provide a novel characterization which shows
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Prop1 + EF1
1 EF1 EF1 + PO EF1 + fPO

Prop 3 3 ? 7 (Thm 3)
EF 3 3 (Thm 2) ? 7

GF 3 (Cor 1) 7 (Thm 3) 7 7

Table 1: Summary of our results. Each row corresponds to an ex-ante guarantee while each column
corresponds to an ex-post guarantee. A 3 indicates possibility (and polynomial-time computation),
a 7 indicates impossibility, and a ? indicates an open problem. Note that positive results propagate
above and to the left, while negative results propagate below and to the right.

that this is the only allocation rule that can be used to achieve the desired properties. Table 1
summarizes our results.

Finally, in Section 7, we extend our results to the case of bads. In particular, for Recursive
Probabilistic Serial, we show that the natural extension only manages to achieve ex-post EF2
(in addition to ex-ante EF), but ex-post EF1 can be recovered through a simple modification.

1.2 Related Work

A large body of work in computer science and economics has focused on finding exactly ex-ante
fair randomized allocations as well as approximately fair deterministic allocations, and we cite
those works as appropriate throughout the paper. Combining the two approaches was recently
listed as an “interesting challenge” by Aziz [5]; however, little work has focused on this problem.
Two exceptions are Aleksandrov et al. [3] and Budish et al. [23]. Aleksandrov et al. [3] consider
randomized allocation mechanisms for an online fair division problem and analyze their ex-ante
and ex-post fairness guarantees. The style of their results is very similar to ours, however they
restrict attention to binary utilities, which simplifies the problem significantly. Budish et al. [23]
study the problem of implementing a general class of random allocation mechanisms subject to
ex-post constraints, although the ex-post constraints are not the same as ours. In particular,
they do not consider ex-post axiomatic guarantees from the fair division literature as we do.

In the random assignment literature in economics, the idea of constructing a fractional
assignment and implementing it as a lottery over pure assignments was introduced by Hylland
and Zeckhauser [37]. Later work has studied both ex-ante and ex-post fairness and efficiency
guarantees provided by mechanisms in this setting [1, 16, 26, 40], but most of this work studies
ordinal utilities and does not consider approximate notions of ex-post fairness. (The standard
random assignment setting has n agents, n items, and requires that each agent receive exactly
one item. The notion of ex-post fairness that we use in this work, envy-freeness up to one good,
is vacuous in this restricted setting.) Gajdos and Tallon [32] study the relationship between
ex-ante and ex-post fairness but in their model the randomness comes from nature, not the
allocation rule. Other work studies the problem of implementing a fractional outcome over
deterministic outcomes subject to (possibly soft) constraints [2, 23], but the constraints allowed
by these papers do not fully capture our ex-post fairness notions.

In Section 6, we obtain a characterization of the maximum Nash welfare (MNW) rule —
this is equivalent to competitive equilibrium with equal incomes (CEEI) [4, 30], and is also
known as the competitive rule or the Walras rule — for fractional allocations using group fair-
ness and a property called replication-invariance. There are several related characterizations in
the literature. Assuming monotonic and strictly convex preferences, it is known that CEEI is
the only replication-invariant allocation rule that is in the core [29], or group envy-free [47], or
proportional and Pareto optimal [45]. While the core, group envy-freeness, or proportionality
together with Pareto optimality are all weaker than group fairness (making these characteri-
zations seemingly stronger), to the best of our knowledge, these characterizations only apply
for strictly convex preferences, and not to additive preferences. We also note that our proof
technique is significantly different from the proofs of these prior characterizations because ad-

3



ditive preferences do not admit some of the nice structural implications that strictly convex
preferences do when combined with replication invariance, as we note in Section 6.

2 Preliminaries

For any positive integer r ∈ N, define [r] := {1, . . . , r}. Let N = [n] denote a set of agents, and
M denote a set of goods where m := |M |.

Fractional and Randomized Allocations. A fractional allocation of the items in M
to the agents in N is specified by a non-negative n×m matrix A ∈ [0, 1]n×m such that for every
item r ∈M , we have

∑
i∈N Ai,r ≤ 1; here, Ai,r denotes the fraction of item r assigned to agent

i. We say that a fractional allocation A is complete if
∑

i∈N Ai,r = 1 for every r ∈M , and call
it partial otherwise.

A fractional allocation A is integral if Ai,r ∈ {0, 1} for every i ∈ N and r ∈M . For integral
allocations, we will find it convenient to denote the binary vector Ai = (Ai,r)r∈M as a set
Ai := {j ∈ M : Ai,r = 1}. We will refer to Ai as the bundle of items assigned to agent i, and
denote the allocation A as an ordered tuple of bundles A = (A1, . . . , An). When we simply say
‘an allocation’, it will mean a fractional allocation, unless otherwise clear from the context. For
notational clarity, we use letters X or Y for fractional allocations, and write A or B for integral
allocations. Let X be the set of all (complete or partial) fractional allocations.

A randomized allocation is a lottery over integral allocations (we denote them by bold letters
for clarity). Formally, a randomized allocation X is specified by a set of ` ∈ N ordered pairs
{(pk, Ak)}k∈[`], where, for every k ∈ [`], Ak is an integral allocation implemented with probability

pk ∈ [0, 1], and
∑

k∈[`] p
k = 1. The support of X is the set of integral allocations {A1, . . . , A`}.

A randomized allocation X := {(pk, Ak)}k∈[`] is naturally associated with the fractional

allocation X :=
∑

k∈[`] p
kAk, where Xi,r is the (marginal) probability of agent i receiving good

r under X. In this case, we say that randomized allocation X implements fractional allocation
X. There may be many randomized allocations implementing a given fractional allocation. In
Sections 3 and 5, we discuss and make use of two known techniques for implementing a given
fractional allocation.

Preferences. Each agent i ∈ N has an additive valuation function vi, where vi,r ≥ 0 denotes
the agent’s utility for fully receiving good r ∈M . Later, in Section 7, we consider allocation of
bads, where vi,r ≤ 0 for each agent i ∈ N and bad r ∈M . Note that vi induces a weak order <i

over goods where gr <i gs if and only if vi,r ≥ vi,s, and gr �i gs if and only if vi,r > vi,s. The
utility of agent i under an allocation X ∈ X is given by vi(Xi) =

∑
r∈M Xi,r · vi,r. We assume

that for each good r ∈ M , there exists at least one agent i ∈ N with vi,r > 0. This is without
loss of generality as goods valued zero by everyone can be allocated arbitrarily.

Allocation rule. A fair division instance I is defined by the triple (N,M, (vi)i∈N ). We let
I denote the set of all instances. An allocation rule f : I → 2X maps instances to (sets of)
allocations.

Definition 1 (Fractional Maximum Nash Welfare Rule). Given an instance I ∈ I, the fractional
Maximum Nash Welfare (MNW) rule returns all fractional allocations that maximize the product
of agents’ utilities, i.e., MNW(I) := arg maxX∈X Πi∈N vi(Xi). We refer to an allocation
A ∈ MNW(I) as a fractional MNW allocation. Integral MNW allocations maximize the product
of agents’ utilities across all integral allocations; however, there is a subtle tie-breaking involved
in that case [24].

We now discuss a number of properties concerning fairness and efficiency of allocations and
allocation rules.
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2.1 Fairness and Efficiency Properties

For any property 〈P 〉 defined for a fractional allocation, we say that a randomized allocation X
satisfies 〈P 〉 ex-ante if the fractional allocation X it implements satisfies 〈P 〉. Similarly, for any
property 〈Q〉 defined for an integral allocation, we say that a randomized allocation X satisfies
〈Q〉 ex-post if every integral allocation in its support satisfies 〈Q〉.

We begin with a classic fairness notion called proportionality.

Definition 2 (Proportionality (Prop); [44]). An allocation X is proportional if for each agent
i ∈ N , vi(Xi) ≥ vi(~1m)/n, where vi(~1

m) is agent i’s utility for receiving all goods fully.

For complete allocations, the following fairness guarantee is logically stronger than propor-
tionality, and has been a subject of substantial research.

Definition 3 (Envy-Freeness (EF); [31]). An allocation X is envy-free if for every pair of agents
i, j ∈ N , we have vi(Xi) ≥ vi(Xj).

Given allocations X and Y , we say that agent i SD-prefers Xi to Yi, written Xi <SD
i Yi, if

for every good g ∈M , we have that
∑

gr∈{g′∈M :g′<ig}Xi,r ≥
∑

gr∈{g′∈M :g′<ig} Yi,r. Here, “SD”

refers to first-order stochastic dominance. It is easy to check that Xi <SD
i Yi is equivalent to

v′i(Xi) ≥ v′i(Yi) under every additive valuation v′i consistent with the ordinal preference relation
<i.

Definition 4 (SD-Envy-Freeness (SD-EF); [16]). An allocation X is SD-envy-free if for every
pair of agents i, j ∈ N , we have Xi <SD

i Xj .

Equivalently, an allocation is SD-envy-free if it is envy-free under any additive valuation
functions of the agents consistent with (<i)i∈N . Next, we discuss economic efficiency of alloca-
tions.

Definition 5 (Fractional Pareto Optimality (fPO) and Pareto Optimality (PO)). An allocation
X is fractionally Pareto optimal if there is no fractional allocation Y that Pareto-dominates it,
i.e., satisfies vi(Yi) ≥ vi(Xi) for all agents i ∈ N and at least one inequality is strict. An integral
allocation A is Pareto optimal if there is no integral allocation B that Pareto-dominates it.

For fractional allocations, fPO is traditionally just referred to as Pareto optimality, so we
will use fPO and PO interchangeably. However, for integral allocations, fPO is stronger than
PO [10].

Proposition 1. If a randomized allocation is ex-ante PO, then it is also ex-post fPO.

Proof. Proof. If a randomized allocation X := {(pk, Ak)}k∈[`] implementing a fractional alloca-

tion X is not ex-post fPO, then for some k ∈ [`], integral allocation Ak must be Pareto dominated
by a fractional allocation, say Y . Then, the fractional allocation X ′ := pk · Y +

∑
r 6=k p

r · Ar

Pareto-dominates X, which implies that X is not ex-ante PO.

The following property generalizes various properties mentioned above. Given any set S ⊆ N
of agents, we write ∪i∈SXi to denote the union of the fractional allocations to agents in S, i.e.,
∪i∈SXi := (

∑
i∈S Xi,r)r∈M .

Definition 6 (Group Fairness (GF); [28]). An allocation X is group fair if for all non-empty
subsets of agents S, T ⊆ N , there is no fractional allocation Y of ∪i∈TXi to the agents in S

such that |S||T | · vi(Yi) ≥ vi(Xi) for all agents i ∈ S and at least one inequality is strict.

Note that imposing the above constraint over restricted (S, T ) pairs can recover properties
such as proportionality (|S| = 1, T = N), envy-freeness (|S| = |T | = 1), and fractional Pareto
optimality (S = T = N).

While the fairness properties mentioned above are compelling, they cannot be guaranteed
with integral allocations. For such allocations, it is meaningful to consider approximate fairness
notions, some of which are discussed below.
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Definition 7 (Proportionality Up To One Good (Prop1); [27]). An integral allocation A is
proportional up to one good if for every agent i ∈ N , either vi(Ai) ≥ vi(~1m)/n or there exists a
good r /∈ Ai such that vi(Ai) + vi,r ≥ vi(~1

m)/n, where vi(~1
m) is agent i’s utility for receiving

all goods fully.

Definition 8 (Envy-Freeness Up To One Good (EF1); [22, 39]). An integral allocation A
is envy-free up to one good if for every pair of agents i, j ∈ N such that Aj 6= ∅, we have
vi(Ai) ≥ vi(Aj \ {r}) for some good r ∈ Aj .

All of our possibility and impossibility results also apply for the following natural strength-
ening of EF1, which has been formally defined in subsequent work [7].

Definition 9 (SD-Envy-Freeness up to One Good (SD-EF1)). An integral allocation A is
SD-envy-free up to one good if for every pair of agents i, j ∈ N such that Aj 6= ∅, we have
Ai <SD

i Aj \ {r} for some good r ∈ Aj .

This is equivalent to agent i not envying agent j up to one good under every additive
valuation consistent with the ordinal preference relation <i.

The next property, called envy-freeness up to one good more-and-less (EF1
1) [9], is a relaxation

of EF1 and enjoys strong algorithmic support in conjunction with PO, for goods (Section 5) as
well as bads (Section 7).

Definition 10 (Envy-Freeness Up To One Good More-and-Less (EF1
1)). An integral allocation

A is envy-free up to one good more-and-less if for every pair of agents i, j ∈ N such that Aj 6= ∅,
we have vi(Ai ∪ {ri}) ≥ vi(Aj \ {rj}) for some goods ri /∈ Ai and rj ∈ Aj .

These three guarantees are logically related as follows: SD-EF1 =⇒ EF1 =⇒ EF1
1 and

SD-EF1 =⇒ EF1 =⇒ Prop1.

3 Possibility: Ex-Ante EF + Ex-Post EF1

This section describes our main result that ex-ante envy-freeness can be achieved in conjunction
with ex-post envy-freeness up to one good (EF1).

A natural approach towards this question is to start with the round-robin method. Under
this method, we fix an agent ordering, and then agents take turns picking one good at a time
in a cyclic fashion. At each step, an agent picks her most valuable good that is still available.
It is well-known that for any agent ordering, this method produces an integral allocation that
is EF1 [24]. Further, it is easy to see that uniformly randomizing the agent ordering — the
so-called randomized round-robin method — also achieves ex-ante proportionality.

Proposition 2. With additive valuations, randomized round-robin is ex-ante proportional and
ex-post envy-free up to one good.

Proof. Proof. We already noticed that randomized round-robin is ex-post EF1. For ex-ante
Prop, fix an agent i, and suppose, without loss of generality, that vi,1 ≥ vi,2 ≥ . . . ≥ vi,m.
For ease of presentation, suppose that m = cn for some positive integer c. When agent i is
k-th in the ordering, her value for her allocation is at least vi,k + vi,k+n + . . . + vi,k+(c−1)n =∑c

c′=1 vi,(c′−1)n+k because the c′-th good she chooses must be no less preferred than her (c′ −
1)n + k-th most preferred good. Since she appears in every position in the ordering with
probability 1/n, her expected value is at least 1

n

∑m
k=1

∑c
c′=1 vi,(c′−1)n+k = 1

n

∑m
r=1 gi,r, which

matches her proportionality guarantee.

However, as we observe below, this approach fails to achieve ex-ante envy-freeness.
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g1 g2 g3
a1 1 + ε 1 1− 4ε
a2 1− 4ε 1 + ε 1
a3 1 + ε 1− 4ε 1

Example 1. Consider an instance with three agents a1, a2, a3 and three goods g1, g2, g3 as
shown below, where 0 < ε < 0.25 (we note that a similar instance was used by Aziz and Ye
[6, Proposition 13] in the divisible goods (i.e., cake cutting) setting to show that a constrained
serial dictatorship mechanism violates envy-freeness):

The allocations produced by various agent orderings are as follows: The order (a1, a2, a3)
induces the allocation A1 = ({g1}, {g2}, {g3}), the order (a1, a3, a2) induces the allocation
A2 = ({g1}, {g2}, {g3}), the order (a2, a1, a3) induces the allocation A3 = ({g1}, {g2}, {g3}),
the order (a2, a3, a1) induces the allocation A4 = ({g3}, {g2}, {g1}), the order (a3, a1, a2) in-
duces the allocation A5 = ({g2}, {g3}, {g1}), and the order (a3, a2, a1) induces the allocation
A6 = ({g3}, {g2}, {g1}).

Let A := 1
6 (A1+· · ·+A6) denote the fractional allocation implemented by randomized round-

robin. Notice that v1(A1) = 3(1 + ε) + 1 + 2(1−4ε) = 6−5ε and v1(A2) = 5 + (1−4ε) = 6−4ε,
implying that a1 envies a2.

Let us revisit our motivating example from the introduction, where the same set of goods
need to be allocated repeatedly over time. As we discussed, a seemingly promising solution is
to use round-robin every time, and cycle through all n! possible agent orderings to eliminate
the “advantage” that any agent has over another in a specific ordering. In the long run, the
allocation produced would resemble the fractional allocation returned by randomized round-
robin. While Proposition 2 shows that this would guarantee each agent her proportional share
in the long run, Example 1 points out that envy may not vanish, even in the long run.

Instead of starting from a method that guarantees ex-post EF1 and using it to achieve
ex-ante EF, let us do the opposite: Start from a fractional EF allocation and implement it
using integral EF1 allocations. Probabilistic serial is a well-studied algorithm that produces
a fractional envy-free allocation [16]. This algorithm uses a serial eating protocol wherein all
agents simultaneously start eating their respective favorite goods at the same constant speed.
Once a good is completely consumed by a subset of agents, each of those agents proceeds to
eating her favorite available good at the same speed. The algorithm terminates when all goods
have been eaten, and the fraction of each good consumed by an agent is allocated to her. A
useful property of this algorithm is that it only uses the ordinal preferences of agents over goods,
and computes an allocation that is ex-ante envy-free for any additive utilities consistent with
the ordinal preferences; thus, it is SD-envy-free.

In Section 3.1, we present a variant of this procedure, which we call recursive probabilistic
serial, that provides the desired fairness guarantees, i.e., ex-ante EF and ex-post EF1. While
this procedure efficiently produces a sample integral allocation, computing the full randomized
allocation it returns may take exponential time. Later, in Section 3.2, we describe a modification
of this procedure that runs in strongly polynomial time.

It is worth noting that in a follow-up to our work, Aziz [7] has shown that the fractional
allocation produced by probabilistic serial can also be implemented using an ex-post EF1 ran-
domized allocation. The key idea in his proof is to consider multiple “copies” of each agent—one
for each unit of time—such that the i-th copy consumes the same good(s) as consumed by the
agent between the time steps t = i−1 and t = i. The desired implementation is then obtained by
applying Birkhoff-von Neumann theorem to the “expanded” allocation matrix whose columns
comprise of the goods, and rows comprise of all copies of each agent.
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Algorithm 1 Ex-ante EF + ex-post EF1

1: B ← (∅, . . . , ∅) . Initialize the allocation
2: M0 ←M . Initialize the set of available goods
3: for t = 1 to dmn e do
4: Xt ← Eating(M t, 1) . Run the eating protocol for one unit of time
5: BvN: Xt =

∑`
k=1w

t,kAt,k . Decomposition from Theorem 1
6: Bt ← At,k with probability wt,k . Sampling step
7: M t+1 ←M t \

⋃
i∈N Bt

i . Fix the assignments according to the sampled allocation

8: Bi ← Bi ∪
dm
n
e

t=1 B
t
i for all i ∈ N . Update integral allocation

9: end for
10: return B

3.1 Recursive Probabilistic Serial

The eating protocol used by the probabilistic serial algorithm can be formally defined as follows:
Given as input a subset of goods M ′ ⊆ M , the algorithm allows each agent to consume its
favorite available good in M ′ out of those that have not yet been fully consumed at a rate of one
good per unit time. Let Xt := Eating(M ′, t) denote the (partial) allocation obtained when the
algorithm is run for t units of time. Note that Eating(M, dmn e) is equivalent to the outcome of
the probabilistic serial algorithm [16].

We will make use of the following classic theorem [15, 49], stated in a general form.

Theorem 1 (Birkhoff-von Neumann). Let X be a real-valued n×m matrix such that

1. Xi,r ∈ [0, 1] for every i ∈ [n] and r ∈ [m],

2.
∑m

r=1Xi,r ≤ 1 for every i ∈ [n], and

3.
∑n

i=1Xi,r ≤ 1 for every r ∈ [m].

Then, in strongly polynomial time, one can compute integral matrices A1, A2, . . . , Aq and weights
w1, w2, . . . , wq ∈ [0, 1] such that

1.
∑q

k=1 w
k = 1 and X =

∑q
k=1 w

kAk,

2. for each integral matrix Ak, we have Ak
i,r ∈ {0, 1} for every i ∈ [n] and r ∈ [m], and

3. for every k ∈ [q], we have

(a) b
∑m

r=1Xi,rc ≤
∑m

r=1A
k
i,r ≤ d

∑m
r=1Xi,re for every i ∈ [n], and

(b) b
∑n

i=1Xi,rc ≤
∑n

i=1A
k
i,r ≤ d

∑n
i=1Xi,re for every r ∈ [m].

We will now describe our algorithm. The algorithm proceeds in stages. In each stage, the
Eating procedure is run for one unit of time, after which every agent has consumed a total
mass of one item (although an individual item may be fractionally consumed). Then, Theorem 1
is used to decompose this fractional (partial) allocation into integral allocations. By implication
(3a) of Theorem 1, each agent receives exactly one item in each integral allocation in the support.
We interpret the weights w1, . . . , wq as probabilities, and sample an integral allocation from this
distribution before proceeding to the next stage. The algorithm then fixes the assignments of
the goods to the agents in accordance with the aforementioned integral partial allocation, and
repeats the eating procedure with the reduced set of goods. In the final stage of the algorithm,
fewer than n goods might remain, in which case some agents do not receive any good under
the integral allocation. The full procedure is described in Algorithm 1. Note that Algorithm 1
is a randomized algorithm that returns an integral allocation in every execution. One could,
however, also consider the implied fractional allocation, which is obtained by taking expectation
over the randomness in Line 6. Algorithm 3 in Section 9.1 provides the pseudocode for a
recursive formulation of the algorithm. Example 2 illustrates the execution of our algorithm.
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Figure 1: The fractional allocation X1 and its decomposition used in Example 2.

Example 2. Consider an instance with four goods and two agents a1, a2. The preferences of a1
and a2 are such that v1(g1) > v1(g2) > v1(g3) > v1(g4) and v1(g1) > v1(g3) > v1(g2) > v1(g4).
In the first stage of the algorithm, a1 consumes half of g1 and half of g2, while a2 consumes half of
g1 and half of g3. Figure 1 shows the corresponding fractional allocation and its decomposition.

Suppose the integral allocation sampled by the algorithm is A1 (this happens with probability
0.5). Thus, a1 is allocated g1 and a2 is allocated g3, leaving g2 and g4 remaining in the second
stage. Since both agents prefer g2 to g4, each agent consumes half of each good. Therefore,
conditioned on allocation A1 being sampled in the first stage, each agent is allocated each of g2
and g4 with probability 0.5 at the end of the second stage. The corresponding distribution is
given by

0.5×
[
1 0 0 1
0 1 1 0

]
+ 0.5×

[
1 1 0 0
0 0 1 1

]
.

Similarly, if allocation A2 is sampled at the end of first stage, then each of the two agents gets
half of g3 and g4, resulting in the following (conditional) distribution at the end of second stage:

0.5×
[
0 1 1 0
1 0 0 1

]
+ 0.5×

[
0 1 0 1
1 0 1 0

]
.

Combining the above observations, we get that the distribution over integral allocations
produced by Algorithm 1 on this example is

0.25×
[
1 0 0 1
0 1 1 0

]
+ 0.25×

[
1 1 0 0
0 0 1 1

]
+ 0.25×

[
0 1 1 0
1 0 0 1

]
+ 0.25×

[
0 1 0 1
1 0 1 0

]
.

Observe that the fractional allocation returned by Algorithm 1 differs from that returned by
the probabilistic serial algorithm on this example. Indeed, the latter assigns g2 exclusively to
a1 and g3 exclusively to a2, whereas Algorithm 1 does not. As a consequence, Algorithm 1 fails
to satisfy ordinal efficiency, which is satisfied by probabilistic serial.

We will first show that every integral allocation returned by Algorithm 1 satisfies EF1. The
proof relies crucially on the following lemma.

Lemma 1. Let t < dm/ne. Let gi,t denote the good allocated to agent i in iteration t of
Algorithm 1. Then agent i (weakly) prefers gi,t to all goods in M t+1 (goods unallocated after t
iterations of the algorithm).

Proof. Proof. Suppose, for contradiction, that there exists a good g∗ ∈M t+1 such that vi(g
∗) >

vi(gi,t). Then, by Theorem 1, agent i must have eaten a non-zero share of good gi,t in iteration
t. On the other hand, g∗ ∈M t+1 implies that g∗ ∈M t, and thus g∗ must not be fully consumed
in iteration t (i.e.,

∑t
s=1

∑n
i=1B

s
i,g∗ < 1). However, since vi(g

∗) > vi(g), agent i should have
then consumed g∗ before consuming gi,t in iteration t, which is a contradiction.

Lemma 2. Every integral allocation returned by Algorithm 1 satisfies EF1.

Proof. Proof. For any i ∈ [n], let gi,t denote the good received by agent i in iteration t (if such
a good exists). Fix a pair of agents i, j ∈ N . By Lemma 1, for every t < dm/ne, we have
vi(gi,t) ≥ vi(gj,t+1) because gj,t+1 ∈M t+1. Hence,

vi(Ai) ≥
dm/ne−1∑

t=1

vi(gi,t) ≥
dm/ne∑
t=2

vi(gj,t) = vi(Aj \ {gj,1}),

9



which establishes EF1.

Theorem 2. The randomized allocation implemented by Algorithm 1 is ex-ante envy-free and
ex-post EF1.

Proof. Proof. The ex-post EF1 guarantee follows readily from Lemma 2. To prove ex-ante EF,
notice that each agent eats her most preferred available good at each point in time during the
Eating algorithm. Therefore, for any iteration t, the partial fractional allocation Xt computed
by the Eating(·) procedure in iteration t is envy-free.

Fix a pair of agents i, j ∈ N . We want to show that E[vi(Bi)] ≥ E[vi(Bj)]. Note that Bi =⋃dm/ne
t=1 Bt

i and Bj =
⋃dm/ne

t=1 Bt
j . Due to additive preferences and linearity of expectation, it is

sufficient to show that for every t, E[vi(B
t
i )] ≥ E[vi(B

t
j)]. Note that conditioned on B1, . . . , Bt−1,

the expected value of any agent for Bt
i is the value of that agent for Xt

i . Hence, for each possible
value of B1, . . . , Bt−1, envy-freeness of Xt implies that

E[vi(B
t
i )|B1, . . . , Bt−1] = E[vi(X

t
i )|B1, . . . , Bt−1] ≥ E[vi(X

t
j)|B1, . . . , Bt−1]

= E[vi(B
t
j)|B1, . . . , Bt−1],

as desired.

Note that like probabilistic serial, Recursive Probabilistic Serial (Algorithm 1) takes only the
ordinal preferences of agents over goods as input; thus, it is in fact ex-ante SD-EF and ex-post
SD-EF1.

3.2 A Polynomial-Time Algorithm for Ex-Ante EF and Ex-Post EF1

Note that recursive probabilistic serial (Algorithm 1) efficiently produces a sample integral EF1
allocation, but computing the full randomized allocation constructed by it would require expo-
nential time. This is because at each iteration, the algorithm “branches out” into a polynomial
number of subinstances (equal to the size of the support in the BvN decomposition) and this
happens polynomially many times. Also, for the same reason, the randomized allocation it
constructs can, in the worst case, have an exponential number of integral allocations in the
support.

A natural approach towards reducing the support size (in the hope of reducing the overall
running time) is to use the well-known Carathéodory’s theorem from convex analysis, which
states that if a point x ∈ Rd lies in the convex hull of a set P , then x can be expressed as
a convex combination of at most d + 1 vertices of P . Since any fractional allocation X is
a point in an n × m-dimensional space (i.e., X ∈ Rn×m), by Carathéodory’s theorem, if it
is a convex combination of integral allocations in the support {A1, . . . , A`}, then it can also
be written as a convex combination of at most mn + 1 allocations from this set. While this
establishes the existence of a convex combination with small support, it does not automatically
provide an efficient algorithm for converting a convex combination with large support to one
with small support. Indeed, reducing the support size to at most mn + 1 once it has already
grown exponentially may not be possible efficiently. Instead, in our modification of recursive
probabilistic serial, we ensure that the support size remains mn+1 after every step of “branching
out”. Note that every step of “branching out” can increase the support size from mn + 1 to
(mn+ 1) · p(m,n), where p(m,n) is a polynomial that bounds the size of the support produced
by the BvN decomposition. Thus, we need a way to reduce the support size from at most
(mn + 1) · p(m,n) to at most mn + 1. This is where the following beautiful result comes in
handy.

Proposition 3 (Grötschel et al. 36). There is a polynomial-time algorithm that, given a polytope
P with a strong separation oracle and a point y ∈ P, returns a representation of y as a convex
combination of dim(P) + 1 vertices of P.

10



We refer the reader to the aforementioned paper for formal definitions of a polytope, its
dimension, and a strong separation oracle. Let us describe in a bit more detail how we use this
result. It is instructive to revisit the first two iterations of Algorithm 1. Notice that at the end of
the first iteration (t = 1), the fractional partial allocation X1 consists of a polynomial number

of integral allocations in its support, i.e., X1 =
∑`

k=1 w
1,kA1,k, where ` = p(m,n) for some

polynomial p. Consider the polytope P1 formed by the convex hull of the integral allocations
A1,1, . . . , A1,` as follows:

P1 := {z : z =
∑
k

αkA
1,k where αk ≥ 0 for all k ∈ [`] and

∑
k

αk = 1}.

Observe that P1 admits a polynomial-time strong separation oracle. That is, one can decide
in polynomial time whether a given point y ∈ Rn×m belongs to P1, or return a separating
hyperplane if it doesn’t (this can be done via linear programming). This implies that an (mn+1)-
sized decomposition of X1, as guaranteed by Carathéodory’s theorem, can be computed in
polynomial time.

Having computed an (mn + 1)-sized decomposition of X1, we now obtain at most mn +
1 subinstances in each of which we re-run our algorithm. Notice that doing so results in a
probability distribution over (mn+1) ·p(m,n) deterministic allocations at the end of the second
iteration. We can now re-invoke the aforementioned algorithmic version of Carathéodory’s
theorem to once again obtain a decomposition over at most mn+ 1 of these integral allocations
in polynomial time. It is easy to see that this argument in fact holds for all time steps via
induction. Algorithm 4 in Section 9.1 summarizes the polynomial-time implementation of our
algorithm.

Notice that the randomized allocation thus produced has support that is a subset of the
support of the randomized allocation produced by recursive probabilistic serial. Hence, the ex-
post EF1 guarantee of this modified procedure follows immediately from Lemma 1. Finally, it
is also easy to verify that the randomized allocation is also ex-ante EF by essentially the same
argument as in the proof of Theorem 2: Each individual step of the eating procedure produces
an envy-free allocation, so even if we change the convex combination over such allocations, it
remains envy-free.

Again, like Recursive Probabilistic Serial (Algorithm 1), this algorithm takes only the ordinal
preferences of agents over goods as input; thus, it is in fact ex-ante SD-EF and ex-post SD-EF1.

4 Impossibility: Ex-Ante Prop + Ex-Post EF1 + Ex-Post
fPO

In the previous section, we showed that ex-ante EF and ex-post EF1 can be achieved simultane-
ously in polynomial time. The obvious next question, then, is whether we can achieve stronger
guarantees. One property that our algorithms from Section 3 lack is efficiency. We defined
three efficiency notions in Section 2 that are related through the following logical implications:
ex-ante PO ⇒ ex-post fPO ⇒ ex-post PO.

Let us consider adding the weakest of them: ex-post PO. Unfortunately, we were not able to
settle whether ex-ante EF (or even ex-ante Prop) is compatible with ex-post EF1 and ex-post
PO. The difficulty is that we do not understand the structure of integral EF1+PO allocations;
we elaborate on this issue in Section 8 and lay out several more open questions that stem from
this.

Let us move on and consider imposing a slightly stronger efficiency notion: ex-post fPO. We
note that integral EF1+fPO allocations are known to always exist [10]. Hence, the question of
whether we can randomize over such allocations to achieve a desirable ex-ante fairness guarantee
is meaningful. However, in this case, we show that even achieving ex-ante proportionality is
impossible along with ex-post EF1 and ex-post fPO.

11



Theorem 3. There exists an instance with additive valuations in which no randomized allocation
is simultaneously ex-ante proportional, ex-post envy-free up to one good, and ex-post fractionally
Pareto optimal.

Proof. Proof. We present an instance in which the unique integral allocation satisfying EF1+fPO
violates proportionality. Specifically, consider an instance with two goods (g1, g2) and two agents
(a1, a2) whose additive valuations are as follows: v1,1 = 1, v1,2 = 2 and v2,1 = 1, v2,2 = 3. This
instance has exactly two integral EF1 allocations: A := ({g1}, {g2}) and B := ({g2}, {g1}).
It is easy to check that B is not fPO, since it is Pareto dominated by a fractional allocation
X that assigns g1 completely to a1, and splits g2 equally between the two agents. Indeed,
v1(X1) = v1(g1) + 0.5 · v1(g2) = 2 ≥ v1(B1) and v2(X2) = 0.5 · v2(g2) = 1.5 > v2(B2). To see
why A is fPO, notice that it assigns each good to an agent that has the highest valuation for
it. Therefore, A maximizes the utilitarian social welfare (i.e., sum of agents’ utilities) and is
therefore fPO.

Finally, observe that A violates proportionality since v1(A1) = v1(g1) < 1
2v1(g1∪g2). There-

fore, any randomized allocation that is ex-post EF1+fPO must be supported entirely on the
integral allocation A, in which case it violates ex-ante Prop, as desired.

For example, since ex-ante envy-freeness and ex-ante group fairness imply ex-ante propor-
tionality, they are also incompatible with ex-post EF1+fPO. Similarly, since ex-ante PO implies
ex-post fPO (Proposition 1), we also get that ex-ante Prop+PO and ex-ante EF+PO are in-
compatible with ex-post EF1.

We mentioned earlier that achieving ex-ante Prop or ex-ante EF along with ex-post EF1+PO
is an open question. Two prominent methods for finding an integral EF1+PO allocation are
the integral MNW rule [24] and the market-based rule of Barman et al. [10]. An interesting
implication of Theorem 3 is that we cannot hope to achieve even ex-ante proportionality by
randomizing over allocations returned by either method. The latter method is guaranteed to
return an integral EF1+fPO allocation, so Theorem 3 directly applies. And the MNW rule,
while only guaranteed to return an integral EF1+PO allocation, uniquely returns allocation A
in the example presented in the proof of Theorem 3, which violates proportionality.

5 Possibility: Ex-Ante GF + Ex-Post Prop1 + Ex-Post
EF1

1

Given the impossibility of ex-ante Prop and ex-post EF1+fPO derived in the previous section, it
is evident that retaining efficiency would require relaxing at least one of the fairness guarantees.
Ex-ante Prop is already a very weak fairness guarantee. So, in this section, we focus on relaxing
ex-post EF1. There are two relaxations that have been proposed in the literature — namely,
Prop1 and EF1

1. We show that both of these can be achieved simultaneously, and in fact, this
can be done while strengthening ex-ante Prop and ex-post fPO to ex-ante GF. Recall that ex-
ante GF implies not only ex-ante Prop, but also ex-ante PO, which, by Proposition 1, implies
ex-post fPO for any implementation of it. In other words, our goal is to implement a fractional
GF allocation using integral Prop1+EF1

1 allocations.
Luckily, we know that a fractional GF allocation always exists. Conitzer et al. [28] argued

that a fractional MNW allocation satisfies group fairness. They did not provide a formal proof;
for completeness, we provide a proof of this result for the more general cake-cutting setting in
Section 10.1. Further, we know that a fractional MNW allocation can be computed in strongly
polynomial time [41, 48].

Hence, we ask whether a fractional MNW allocation can be implemented using integral
Prop1+ EF1

1 allocations. Our starting point is a result by Budish et al. [23] that allows imple-
menting any fractional allocation using integral allocations that are very “close” to it in agent
utilities. Specifically, they prove the next result deriving and using an extension of the classic
Birkhoff-von Neumann theorem [15, 49].
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Proposition 4 (Utility Guarantee; Theorem 9 of Budish et al. [23]). Given any fractional allo-
cation X, one can compute, in strongly polynomial time, a randomized allocation implementing
X whose support consists of integral allocations A1, . . . , A` such that for every k ∈ [`] and every
agent i ∈ N ,

|vi(Xi)− vi(Ak
i )| ≤ max{vi(g)− vi(g′) : 0 < Xi,g, Xi,g′ < 1 and g, g′ ∈M}.

Notice that the upper bound established in Proposition 4 on how much agent i’s utility
under an integral allocation Ak in the support can differ from her utility under the fractional
allocation X depends only on the fractional allocation X. In contrast, the fairness guarantees we
want to establish for the integral allocations in the support — Prop1 and EF1

1 — consider what
happens when we add a good to the bundle of agent i that agent i is not already allocated ; in
other words, we need a stronger guarantee for integral allocations in the support which depends
on which goods the agent is (or is not) allocated ex-post.

It turns out that the method proposed by Budish et al. [23] already provides such a guarantee,
and their proof can be adapted to establish a more nuanced bound. Specifically, we show that
if the agent’s ex-ante utility vi(Xi) exceeds her ex-post utility vi(A

k
i ), then the gap is at most

the maximum value the agent has for any good that she lost in the integral allocation (i.e., any
good g such that 0 < Xi,g < 1 and Ak

i,g = 0). Similarly, if the ex-post utility exceeds the ex-ante
utility, then the gap is at most the maximum value the agent has for any good that she gained
in the integral allocation (i.e., any good g such that 0 < Xi,g < 1 and Ak

i,g = 1). We later show
that this subtle improvement helps us establish the desired ex-post fairness guarantees.

Lemma 3 (Utility Guarantee++). Given a fractional allocation X, one can compute, in
strongly polynomial time, a randomized allocation implementing X whose support consists of
integral allocations A1, . . . , A` such that for every k ∈ [`] and every agent i ∈ N , the following
hold:

1. If vi(A
k
i ) < vi(Xi), then ∃ g−i /∈ Ak

i with Xi,g−i
> 0 such that vi(A

k
i ) + vi(g

−
i ) > vi(Xi).

2. If vi(A
k
i ) > vi(Xi), then ∃ g+i ∈ Ak

i with Xi,g+
i
< 1 such that vi(A

k
i )− vi(g+i ) < vi(Xi).

The proof of Lemma 3 is presented in Section 10.3.
We now show how Lemma 3 can be used to achieve our desired ex-post fairness guarantees

of Prop1 and EF1
1.

Theorem 4. There is a strongly polynomial-time algorithm that, given any fractional propor-
tional (Prop) allocation as input, computes an implementation of it using integral allocations
that are proportional up to one good (Prop1). If, in addition, the input is a fractional MNW
allocation, then the integral allocations in the support also satisfy envy-freeness up to one good
more-and-less (EF1

1).

Proof. Proof. Let X be a fractional allocation, and let A1, . . . , A` be integral allocations in the
support of an implementation of X produced by Lemma 3.

Suppose X satisfies proportionality. We want to show that for each k ∈ [`], Ak is Prop1.
Since X is proportional, for every i ∈ N , vi(Xi) ≥ vi(~1m)/n, where vi(~1

m) is agent i’s utility for
receiving all goods fully. Fix k ∈ [`]. By Lemma 3, we have that for every agent i ∈ N , either
vi(A

k
i ) ≥ vi(Xi) ≥ vi(~1m)/n, or there exists a good g /∈ Ak

i such that vi(A
k
i ) + vi(g) > vi(Xi) ≥

vi(~1
m)/n. Therefore, Ak is Prop1.
Next, suppose that X maximizes the Nash social welfare among all fractional allocations.

Since a fractional MNW allocation is certainly proportional [47], the aforementioned argument
still applies for ex-post Prop1. We show that in this case, Ak is also EF1

1 for each k ∈ [`]. Note
that since X is a fractional MNW allocation, the following condition is satisfied for any pair of
agents i, j ∈ N and any good g ∈M (the condition that transferring an arbitrarily small fraction
of good g from agent i to agent j does not increase Nash welfare reduces to this condition):

Xi,g > 0 =⇒ vi(g)

vi(Xi)
≥ vj(g)

vj(Xj)
. (1)
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Fix a pair of distinct agents i, j ∈ N . By Lemma 3, either vi(A
k
i ) ≤ vi(Xi), or there exists

g+i ∈ Ak
i with Xi,g+

i
< 1 such that vi(A

k
i \ {g

+
i }) < vi(Xi). Similarly, either vj(A

k
j ) ≥ vj(Xj),

or there exists g−j /∈ Ak
j with Xj,g−j

> 0 such that vj(A
k
j ∪ {g

−
j }) > vj(Xj). To simplify the

analysis, let us assume that the second condition holds in both cases. (If vi(A
k
i ) ≤ vi(Xi) (or

vj(A
k
j ) ≥ vj(Xj)), we can treat g+i (or g−j ) as a dummy good with vi(g

+
i ) = 0 (or vj(g

−
j ) = 0).)

By summing the right-hand side inequality in Equation (1) over all g ∈ Ak
i \ {g

+
i }, we get

vj(A
k
i \ {g

+
i })

vj(Xj)
≤ vi(A

k
i \ {g

+
i })

vi(Xi)
< 1.

Thus, vj(A
k
i \ {g

+
i }) < vj(Xj) < vj(A

k
j ∪ {g

−
j }), implying that Ak satisfies EF1

1, as desired.

Notice that the proof of Theorem 4 establishes a stronger version of Prop1 wherein an agent
not receiving her proportional share gets strictly more than her proportional share by receiving
one additional good. Similarly, it also establishes a stronger version of EF1

1 wherein an agent
envying another agent would strictly prefer her own allocation over the other agent’s allocation
after adding one missing good to her bundle and removing one good from the other agent’s
bundle.

Barman and Krishnamurthy [9] recently established that integral Prop1+EF1
1+fPO alloca-

tions exist and can be computed in strongly polynomial time. They rely on special-purpose tech-
niques for rounding a fractional MNW allocation. By constrast, Theorem 4 uses a standard tech-
nique to round a fractional MNW allocation, computes not just one integral Prop1+EF1

1+fPO
allocation but rather an implementation of the fractional MNW allocation over such integral
allocations, and can be applied to any fractional Prop+PO allocation to implement it using inte-
gral Prop1+fPO allocations. (Recall that since a fractional MNW allocation is Pareto optimal,
any allocation in the support of an implementation of it must be fPO by Proposition 1.)

The reason we use a fractional MNW allocation in Theorem 4 is because it is known to be
group fair (GF). This observation, the fact that a fractional MNW allocation can be computed
in strongly polynomial time [41, 48], and Theorem 4 immediately yield the main result of this
section.

Corollary 1. There exists a randomized allocation that is ex-ante group fair (GF), ex-post
proportional up to one good (Prop1), and ex-post envy-free up to one good more-and-less (EF1

1).
Further, it can be computed in strongly polynomial time.

6 Characterizing MNW

To prove Corollary 1, we utilized a rounding of a fractional MNW allocation because it is known
to be group fair. One may wonder whether it is possible to use any other fractional allocation
as the basis for this result. In this section, we answer this negatively by showing a fundamental
connection between group fairness and the MNW allocation rule. In particular, we show that
MNW, or refinements thereof, is the only allocation rule that satisfies group fairness together
with replication invariance, which states that the set of allocations returned by an allocation
rule should not substantively change if the input is replicated.

6.1 Replication Invariance

Replication invariance has also been well-explored in economic literature on resource alloca-
tion [29, 45, 46, 47]. Intuitively, it says that if we take an instance I and duplicate it to form k
copies, the output on the duplicated instance contains the duplicate of each possible allocation
on the original instance. Recall that an allocation rule outputs a set of (tied) allocations given
an instance of the fair division problem. Formally, given an instance I = (N,M, (vi)i∈N ) and
a positive integer k ∈ N, let kI denote an instance in which each agent and good is replicated
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k times. For an allocation A on I, let kA denote the allocation on kI in which every copy of
agent i ∈ N receives allocation Ai.

Definition 11 (Replication Invariance). An allocation rule f satisfies replication invariance if,
for every instance I ∈ I, and every allocation A ∈ f(I), kA ∈ f(kI).

We remarked in Section 1.2 that replication invariance works quite well with strictly convex
preferences, which is the domain in which many of the early characterization results of the MNW
rule hold. As just one example, note that under strictly convex utilities, any fractional envy-free
and Pareto optimal allocation must produce identical allocations to two agents with identical
valuations, as observed by Varian [47]. To see this, suppose for contradiction that agents i and
j have identical valuation v but receive different allocations Ai and Aj . Then, envy-freeness
implies that v(Ai) = v(Aj). Now, by strong convexity, v((Ai + Aj)/2) > v(Ai) = v(Aj).
Hence, allocation A violates fractional Pareto optimality because giving each of agents i and
j the allocation (Ai + Aj)/2 would make them both strictly happier. This property comes in
handy when dealing with replication because we know that all replicas of an agent must receive
identical allocations. In contrast, this property does not hold for additive utilities. For example,
if two agents equally like two goods, giving one good fully to one agent and the other good fully
to the other agent violates this property and is yet envy-free and Pareto optimal.

6.2 Group Fairness and Replication Invariance Characterize MNW

We have remarked that MNW satisfies group fairness. We begin this section by showing that
the fractional MNW rule (which returns the set of all fractional MNW allocations) also satisfies
replication invariance.

Proposition 5. The fractional MNW rule satisfies replication invariance.

The proof of Proposition 5 is presented in Section 11.1.
We next show that MNW is in fact characterized by group fairness and replication invari-

ance, in the sense that any allocation rule that sometimes produces an allocation that does
not maximize the product of valuations necessarily violates either group fairness or replication
invariance.

Theorem 5. Any allocation rule that satisfies group fairness and replication invariance is a
refinement of the fractional MNW rule.

Before proving Theorem 5, we show a technical lemma that will be helpful.

Lemma 4. For every instance I, and every Pareto optimal allocation A 6∈ MNW(I), there
exists a pair of agents i, j and X ⊆ Ai with vi(X) ∈ (0, vi(Ai)) and vj(X) > 0, such that

vj(X) > vj(Aj) ·
vi(X)

vi(Ai \X)
. (2)

The proof of Lemma 4 is presented in Section 11.2.

Proof. Proof of Theorem 5. Let f be an allocation rule, and suppose that there exists an
instance I for which there exists an allocation A ∈ f(I) but A 6∈ MNW(I). If A is not Pareto
optimal then it violates group fairness. So suppose A is Pareto optimal. We will show that if it
satisfies replication invariance, then it must violate group fairness.

By Lemma 4, there exist agents i, j and X ⊆ Ai with vi(X) ∈ (0, vi(Ai)) and vj(X) > 0
such that

vj(X) > vj(Aj) ·
vi(X)

vi(Ai \X)
.

Further, suppose that vi(Ai\X)
vi(X) is an integer. This is WLOG because we can just take the set

of goods X and scale them down until we get an integer. Equation (2) is preserved under this
scaling due to additive valuations.
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Let k = vi(Ai\X)
vi(X) ∈ N and consider the replicated instance kI. Denote the copies of agent i

in instance kI by i1, . . . , ik. By replication invariance, kA ∈ f(kI). We show that kA does not
satisfy group fairness. Let S consist of all k copies of i and a single copy of j, and T consist
of all k copies of i. For every ` ∈ [k], let Bi` = Ai` \ X`, where X` is a copy of X, and let
Bj = X1 ∪ . . . ∪Xk. For every copy i` of agent i, we have

|S|
|T |
· vi`(Bi`) =

|S|
|T |
· vi`(Ai` \Xk) =

vi(Ai\X)
vi(X) + 1

vi(Ai\X)
vi(X)

vi(Ai \X) = vi(Ai \X) + vi(X) = vi(Ai)

and for the single copy of j, we have

|S|
|T |
· vj(Bj) =

|S|
|T |
· k · vj(X) =

vi(Ai\X)
vi(X) + 1

vi(Ai\X)
vi(X)

· vi(Ai \X)

vi(X)
· vj(X)

=
vi(Ai)

vi(X)
· vj(X) >

vi(Ai \X)

vi(X)
vj(X) > vj(Aj),

where the final inequality follows from Equation (2). Group fairness is violated.

We explore this characterization further in the appendix. In particular, we investigate the
implications of relaxing or strengthening group fairness. We show that Theorem 5 ceases to hold
even under a relatively mild relaxation of group fairness. We also show that if group fairness
is strengthened to fractional group fairness, which extends group fairness to allow groups that
consist of fractions of agents, then Theorem 5 holds even without requiring replication invariance.

7 The Case of Bads

In this section, we consider the case where we are dividing bads instead of goods. We show that
our positive results from Sections 3 and 5 still apply in this setting.

Formally, let M be a set of m bads. Fractional, integral, and randomized allocations are
defined as in the case of goods. However, the agents now have non-positive valuation functions,
i.e., vi,r ≤ 0 for all agents i ∈ N and bads r ∈ M . The definitions of proportionality, envy-
freeness, (fractional) Pareto optimality, and group fairness are unchanged from the goods case.
However, the definitions of approximate fairness need to be modified. Crucially, when assessing
whether an allocation is approximately fair from the perspective of agent i, we often remove a
bad from (rather than add a good to) i’s bundle and/or add a bad to (rather than remove a
good from) some other agent j’s bundle. This causes the relaxations to differ from their goods
counterparts significantly.

Definition 12 (Proportionality Up To One Bad (Prop1)). An integral allocation A is propor-
tional up to one bad if for every agent i ∈ N , either vi(Ai) ≥ vi(~1

m)/n or there exists a bad
r ∈ Ai such that vi(Ai \ {r}) ≥ vi(~1

m)/n, where vi(~1
m) is agent i’s valuation for receiving all

bads fully.

Definition 13 (Envy-Freeness Up To k Bads (EFk)). An integral allocation A is envy-free up
to k bads if for every pair of agents i, j ∈ N , there exists Si ⊆ Ai with |Si| ≤ k such that
vi(Ai \ Si) ≥ vi(Aj).

Definition 14 (Envy-Freeness Up To One Bad More-and-Less (EF1
1)). An integral allocation

A is envy-free up to one bad more-and-less if for every pair of agents i, j ∈ N such that Ai 6= ∅,
we have vi(Ai \ {ri}) ≥ vi(Aj ∪ {rj}) for some bads ri ∈ Ai and rj /∈ Aj .

Finally, for the case of bads, there is no known equivalent of the MNW allocation rule.
For example, it is known that maximizing or minimizing the product of valuations (or the
product of absolute valuations) leads to dramatically unfair outcomes. However, fractional CEEI
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allocations are still known to exist; we refer an interested reader to the work of Bogomolnaia
et al. [17]. It is easy to show, as in the case of goods, that these allocations must be group fair
(GF). We do not need to introduce the definition of CEEI for bads; we only need the following
property, observed by Bogomolnaia et al. [17, Lemma 6]. If X is a fractional CEEI allocation of
bads, then vi(Xi) < 0 for all agents i ∈ N (this assumes that each agent has a strictly negative
value for at least one bad; if an agent has zero value for all bads, we can effectively remove her
from the instance). Further, for all agents i, j ∈ N and bads r ∈M ,

Xi,r > 0 =⇒ vi,r
vi(Xi)

≤ vj,r
vj(Xj)

. (3)

Note that the quantities on both sides of the inequality are non-negative. This property is
similar to that of CEEI allocations for goods that we used in the proof of Theorem 8.

7.1 Ex-Ante EF + Ex-Post EF1 for Bads

Note that our algorithms from Section 3 — recursive probabilistic serial (RPS) and its polynomial-
time variant — only use ordinal preferences of agents over goods. Hence, these algorithms
naturally extend to the case of bads: Given an agent’s valuation function over bads, we can
construct an ordinal preference over bads in which the bads are sorted in a non-increasing order
of the agent’s valuation for them.

One might wonder how the guarantees that our algorithms provide for goods translate to
the case of bads. While the ex-ante EF guarantee carries over, unfortunately the ex-post EF1
guarantee enjoyed by our algorithms in the case of goods does not directly translate to the case
of bads. To see this, consider an instance with two agents 1, 2 and three bads b1, b2, b3 such that
vi(br) = −r for all i ∈ [2] and r ∈ [3]. That is, all agents strictly prefer bad b1 to b2 and b2 to
b3. In the first step, the agents start eating b1 simultaneously, eat half of b1 each, then move
onto b2, and eat half of b2 each. Consider an integral allocation in which b1 is allocated to agent
1 and b2 is allocated to agent 2. In the second step, each agent eats half of b3. At this point,
our algorithm will, with probability 1/2, allocate b3 to agent 2. This will result in an integral
allocation A in the support where A1 = {b1}, and A2 = {b2, b3}. It is easy to check that agent
2 continues to envy agent 1 even if we remove any one bad from agent 2’s bundle. Removing
two bads from agent 2’s bundle removes the envy, however. Hence, this allocation is EF2, but
not EF1. In fact, we show that both RPS and its polynomial-time variant are always ex-post
EF2 for bads.

Proposition 6. For additive valuation functions over bads, recursive probabilistic serial (RPS)
and its polynomial-time variant from Section 3.2 produce randomized allocations that are ex-ante
envy-free (EF) and ex-post envy-free up to two bads (EF2).

The proof of Proposition 6 is presented in Section 12.1.
Once again, note that because these algorithms only take the ordinal preferences as input,

they in fact guarantee ex-ante SD-EF + ex-post SD-EF2 (which can be defined similarly to
SD-EF1 using the SD preference relation).

It is natural to ask whether this is the best we can do. Note that in the proof of Proposition 6,
an “up to two bads” relaxation was required because the envying agent may receive an extra
bad compared to the envied agent (dm/ne bads as opposed to bm/nc bads). However, when m
is a multiple of n, it turns out that the allocation is in fact ex-post EF1, as the following lemma
shows.

Lemma 5. For additive valuation functions over bads, recursive probabilistic serial and its
polynomial-time variant from Section 3.2 produce randomized allocations that are ex-ante envy-
free (EF) and ex-post envy-free up to one bad (EF1) whenever the number of bads is divisible by
the number of agents.

Proof. Proof. Envy-freeness follows directly from Proposition 6. For EF1, note that the exact
same reasoning as in the proof of Proposition 6 applies, and we have vi({bi,t : 1 ≤ t < bm/nc}) ≥
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vi({bj,t : 2 ≤ t ≤ bm/nc}) ≥ vi(Aj) for every pair of agents i, j ∈ N . However, since n divides
m, we are guaranteed that there is only one bad missing from the LHS, which is that allocated
to agent i in round bm/nc = m/n. Hence, we have vi(Ai \ bi,m/n) ≥ vi(Aj).

What about the case where m is not a multiple of n? It turns out that a simple modification
of RPS (or its polynomial-time variant) works. One can simply add a number of dummy bads
(which all agents value at 0) such that the total number of bads becomes divisible by the number
of agents n, then use RPS or its polynomial-time variant to compute an ex-ante EF + ex-post
EF1 allocation (Lemma 5), and finally remove the dummy bads from the computed allocation,
which does not affect its fairness guarantees. This yields the following result.

Theorem 6. For additive valuation functions over bads, a randomized allocation that is ex-ante
envy-free (EF) and ex-post envy-free up to one bad (EF1) always exists, and can be computed
in strongly polynomial time.

7.1.1 The case of mixed manna.

Let us briefly examine the mixed manna setting in which we need to allocate items, and each
item can be either a good or a bad for each agent. We generically denote an item by o. That
is, for each agent i ∈ N and item o ∈M , we only require that vi,o ∈ R.

Envy-freeness up to one item can be generalized to the mixed manna setting. It requires
that if agent i envies agent j, then the envy can be eliminated by either removing one item from
agent j’s bundle (which must be a good for i), or one item from agent i’s bundle (which must
be a bad for i).

Definition 15 (Envy-Freeness Up To One Item (EF1); [8]). An integral allocation A is envy-free
up to one item if for every pair of agents i, j ∈ N , either i does not envy j (i.e., vi(Ai) ≥ vi(Aj)),
or there exists an item o ∈ Ai ∪Aj such that vi(Ai \ {o}) ≥ vi(Aj \ {o}).

It is easy to check that when the instance consists of only goods or only bads, this definition
reduces to the EF1 definitions we previously introduced. However, our algorithms achieve a
relaxation of this, which we call weak envy-freeness up to one item (w-EF1), that allows both
the removal of an item from agent j’s bundle and an item from agent i’s bundle. Note that
when the instance consists of only goods or only bads, w-EF1 still reduces to the standard EF1
definition.

Definition 16 (Weak Envy-Freeness Up to One Item (w-EF1)). An integral allocation A is
weak envy-free up to one item if for every pair of agents i, j ∈ N , either i does not envy
j (i.e., vi(Ai) ≥ vi(Aj)), or there exists a good oj ∈ Aj and/or a bad oi ∈ Ai such that
vi(Ai \ {oi}) ≥ vi(Aj \ {oj}).

While we were unable to settle the existence of an ex-ante EF + ex-post EF1 allocation
for the mixed manna setting, we are able to guarantee ex-ante EF + ex-post w-EF1. Thus,
Theorem 7 generalizes both Theorem 2 and Theorem 6.

Theorem 7. For additive valuation functions in the mixed manna setting, a randomized allo-
cation that is ex-ante envy-free (EF) and ex-post weak envy-free up to one item (w-EF1) always
exists, and can be computed in strongly polynomial time.

Proof. Proof. Once again, we add dummy items (which all agents value at 0) to guarantee that
m is an integer multiple of n, and remove them at the end. When we run RPS (or its polynomial-
time variant), we can again apply the same argument as in the proof of Proposition 6 to obtain
vi({oi,t : 1 ≤ t < m/n}) ≥ vi({oj,t : 2 ≤ t ≤ m/n}). That is, vi(Ai \ {oi,m/n}) ≥ vi(Aj \ {oj,1}),
which is the desired ex-post w-EF1 guarantee. Ex-ante EF follows with the same reasoning as
before.
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Since our algorithms only take the ordinal preferences of agents over items as input, this
in fact guarantees ex-ante SD-EF and ex-post SD-w-EF1 (which can be defined similarly to
SD-EF1 using the SD preference relation).

Finally, we note that the techniques from this section can also be applied to the decomposition
of probabilistic serial (PS) achieved in the subsequent work of Aziz [7] to obtain an ex-ante
SD-EF and ex-post SD-w-EF1 allocation of mixed manna that retains additional axiomatic
properties of PS.

7.2 Ex-Ante GF + Ex-Post Prop1 + Ex-Post EF1
1 for Bads

We now show that our main result from Section 5 for the case of goods carries over easily to
the case of bads. This is somewhat striking because it has been observed that many results
for the case of goods do not easily carry over to the case of bads [17]. For example, while
it is known that a competitive equilibrium with equal incomes (CEEI) fractional allocation
exists for the case of bads, and such an allocation is envy-free and Pareto optimal, it is no
longer obtained by maximizing or minimizing the product of (dis)utilities, and whether such an
allocation can be computed in polynomial time is a major open question [20, 34]. However, if
such an allocation is given, Brânzei and Sandomirskiy [20] show that one can round it to obtain
an integral Prop1+EF1

1+fPO allocation in strongly polynomial time.
Interestingly, we do not need to re-prove the utility guarantee (Lemma 3) for the case of

bads. Instead, we can simply reduce the case of bads to the case of goods by considering a
modified valuation function v̂i = −vi (thus guaranteeing v̂i ≥ 0), and since Lemma 3 bounds
the difference between the utility of an agent in an integral allocation and her utility in the
original fractional allocation from both below and above, this guarantee remains useful for the
case of bads. We then show that this guarantee is sufficient to establish Prop1 and EF1

1 in the
case of bads as well.

Theorem 8. For additive valuation functions over bads, there is a strongly polynomial-time
algorithm that, given any fractional proportional (Prop) allocation as input, computes an im-
plementation of it using integral allocations that are proportional up to one bad (Prop1). If, in
addition, the input is a fractional CEEI allocation, then the integral allocations in the support
also satisfy envy-freeness up to one bad more-and-less (EF1

1).

The proof of Theorem 8 is presented in Section 12.2.

Corollary 2. For additive valuation functions over bads, there exists a randomized allocation
that is ex-ante group fair (GF), ex-post proportional up to one bad (Prop1), and ex-post envy-
free up to one bad more-and-less (EF1

1). Further, it can be computed in strongly polynomial time
given a fractional CEEI allocation.

We note that in Corollary 2, unlike in the case of goods, we have to add the condition “given
a fractional CEEI allocation”. This is because a fractional CEEI allocation is known to be
computable in strongly polynomial time in the case of goods, but this remains an interesting
open question in the case of bads [20, 34].

8 Discussion

Perhaps the most fascinating open question that stems from our work is whether ex-ante envy-
freeness (or even ex-ante proportionality) is compatible with ex-post EF1 and ex-post PO. While
our simulations did not find a counterexample, simulations have been known to be misleading
for existential results in the past, e.g., in case of the (non)existence of MMS allocations; see [38].

Open Question: Does there always exist a randomized allocation that is ex-ante EF, ex-post
EF1, and ex-post PO? What about ex-ante Prop, ex-post EF1, and ex-post PO?

The difficulty in approaching this question is that there are very few available methods of
finding integral EF1+PO allocations [10, 24], so finding many such allocations and randomizing
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over them is tricky. Also, unlike the set of integral EF1 allocations, which we somewhat under-
stand, not much is known about the set of integral EF1+PO allocations other than the fact that
it is always non-empty. For example, round-robin method allows us to control exactly which
agents might envy which other agents in addition to obtaining EF1. The following questions,
which thus resolve positively for EF1, are open for EF1+PO to the best of our knowledge.

Open Question: Given agents i and j, does there always exist an integral EF1+PO allocation
in which agent i does not envy agent j? What about an integral EF1+PO allocation in which
agent i does not envy any other agent? Given a priority ordering over the agents, does there
always exist an EF1+PO allocation in which no agent envies an agent with lower priority?

Various other open problems remain. For instance, other related notions such as envy-
freeness up to any good (EFX) and approximate maximin-share guarantee (MMS) are natural
candidates for ex-post fairness. (For additive valuations, whether an integral EFX allocation
always exists is an open problem, and while integral MMS allocations do not always exist [38],
3/4-approximate MMS allocations are known to always exist [33, 35].)

Future work could also consider the price of fairness: what fraction of the optimal social
welfare must be sacrificed (in the worst case) in order to guarantee a fair allocation? Bertsimas
et al. [14] and Caragiannis et al. [25] study the price of EF, while Bei et al. [12] and Barman
et al. [11] study the price of EF1 for indivisible goods. What is the price of achieving both
ex-ante EF and ex-post EF1 together?

More broadly, the next step would be to achieve ex-ante and ex-post fairness guarantees
simultaneously in a variety of other problems such as voting, matching, and public decision-
making.
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9 Omitted Material from Section 3

9.1 Recursive Probabilistic Serial

Algorithm 2 Eating

1: Input: A (possibly fractional) set of goods M ′.
2: Output: A fractional allocation X, integral allocations {Ak}k∈[`], and coefficients {wk}k∈[`]
3: X ← fractional (partial) allocation of M ′ by running Probabilistic Serial for one unit of time

(one unit is the time it takes any agent to consume a single unit of any good).
4: return X

Algorithm 3 A Possibly Exponential-Time Implementation of Recursive Probabilistic Serial
(RPS)

1: Input: A (possibly fractional) set of goods M t.
2: Output: A fractional allocation Y t.
3: if M t = ∅ then
4: Y t ← ∅
5: else
6: Xt ← Eating(M t, 1)
7: BvN: Xt =

∑`
k=1w

t,kAt,k

8: Y t ← Xt +
∑`

k=1w
t,k ·RPS(M t \At,k)

9: end if
10: return Y t
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Algorithm 4 A Polynomial-Time Implementation of Recursive Probabilistic Serial (RPS)

1: Input: A (possibly fractional) set of goods M t.
2: Output: A fractional allocation Y t.
3: if M t = ∅ then
4: Y t ← ∅
5: else
6: Xt ← Eating(M t, 1)
7: BvN: Xt =

∑
k w̄

t,kĀt,k

8: Proposition 3: Xt =
∑st

k=1w
t,kAt,k where st ≤ mn+1 is the support-size after compression.

9: q ← 1
10: M t+q ←M t+q−1 \ ∪i∈NXt+q−1

i . Residual set of goods after the qth round of eating
11: while M t+q 6= ∅ do
12: \∗ The fractional allocation at the end of round t + q − 1 is Xt+q−1 =∑st+q−1

k=1 wt+q−1,kAt+q−1,k and has support-size st+q−1 ≤ mn+ 1. ∗\
13: for k = 1, 2, . . . , st+q−1 do
14: Zt+q,k ← Eating(M t+q \At+q−1,k, 1)
15: BvN: Zt+q,k has polynomial-sized support.
16: end for
17: Xt+q ←

∑st+q−1

k=1 wt+q−1,k · Zt+q,k

18: Proposition 3: Compress the support-size of Xt+q to at most mn+ 1.
19: q ← q + 1
20: end while
21: return Y t ← Xt+q−1

22: end if
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10 Omitted Material from Section 5

10.1 MNW satisfies Group Fairness

For completeness, we provide a proof of the result mentioned by Conitzer et al. [28], that MNW
satisfies group fairness. Indeed, we prove a stronger result. We show that this holds not only
for the case of goods division, but in the more general cake-cutting setting.

In the cake-cutting setting, we have a single heterogeneous good modeled by M = [0, 1], and
each agent has an integrable valuation function vi : [0, 1]→ R+. Each agent’s allocation, Ai, is
a finite union of intervals, and vi(Ai) is given by the area under the curve vi over the intervals
in Ai.

A price function p is a measure on M . Say that a subset Z ⊆ M is a positive slice if there
exists an agent i with vi(Z) > 0. A pair (X, p) of allocation X and price p is a strong competitive
equilibrium from equal incomes (s-CEEI) [43] if the following conditions hold:

1. For every positive slice Z ⊆M , p(Z) > 0.

2. For every pair of positive slices Z ⊆M and Zi ⊆ Xi,
vi(Zi)
p(Zi)

≥ vi(Z)
p(Z) .

3. For every i ∈ N , p(Xi) = 1

Segal-Halevi and Sziklai [43] show that the MNW allocation is an s-CEEI allocation when p is

the standard price measure defined by, for all i ∈ N and all Zi ⊆ Xi, p(Zi) = vi(Zi)
vi(Xi)

.

Proposition 7. MNW satisfies group fairness in the cake-cutting setting.

Proof. Proof. Consider an instance of cake cutting and suppose that the MNW/s-CEEI alloca-
tion X violates group fairness. Then there exist subsets of agents S, T ⊆ N with |T | 6= 0 and

an allocation Y of ∪j∈TXj among agents in S such that |S||T | · vi(Yi) ≥ vi(Xi) for all agents i ∈ S
and the inequality is strict for at least one i ∈ S.

By the s-CEEI condition (2), we know that vi(Xi) = vi(Xi)
p(Xi)

≥ vi(Yi)
p(Yi)

for all i ∈ S. Combining

this with the group fairness condition yields

|S|
|T |
· vi(Yi) ≥

vi(Yi)

p(Yi)
=⇒ p(Yi) ≥

|T |
|S|

for all i ∈ S, with at least one inequality strict. Taking the sum over all i ∈ S gives us∑
i∈S p(Yi) > |T |. Finally, because

∑
i∈S p(Yi) = p(∪i∈SYi) = p(∪j∈TXj) =

∑
j∈T p(Xj), it

must be the case that p(Xj) > 1 for some j ∈ T , violating the assumption that (X, p) is
s-CEEI.

10.2 Decomposition result of Budish et al. [23]

Let X be a fractional allocation. Recall that X satisfies column-wise feasibility constraints,
namely 0 ≤

∑
i∈N Xi,r ≤ 1 for all r ∈ M . More generally, we can impose capacity constraints

of the form q
S
≤
∑

(i,r)∈S Xi,r ≤ qS , where S is a constraint set comprising of a collection of
agent-object pairs, and q

S
and qS are the lower and upper quotas for S, respectively. The set

of all capacity constraints imposed by a given problem is called the constraint structure H of
the problem, and is specified as a collection of all constraint sets and the corresponding quotas
(q

S
, qS)S∈H. Given a constraint structure H, we say that the fractional allocation X admits

a feasible implementation X := {(pk, Ak)}k∈[`] if every integral allocation in its support also
satisfies the constraints in H. That is, for every k ∈ [`], we have

q
S
≤
∑

(i,r)∈S A
k
i,r ≤ qS for every S ∈ H.

Definition 17 (Hierarchy and bihierarchy). A constraint structure H is said to be a hierarchy
(or a laminar family) if for every S, S′ ∈ H, we have that either S ⊂ S′, or S′ ⊂ S, or S∩S′ = ∅.
We say that H is a bihierarchy if it can be partitioned into two hierarchies, i.e., if there exist
hierarchies H1 and H2 such that H = H1 ∪H2 and H1 ∩H2 = ∅.
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As an example, consider the fractional allocation X in Figure 2. The row constraints (shown
as red or blue solid rectangles) as well as all singleton constraints of the form 0 ≤ Xi,r ≤ 1 (not
shown in the figure) together constitute a hierarchy, say H1, since for any pair of constraint
sets, either they are disjoint or one is completely contained inside the other. Similarly, the
column constraints (shown as gray dotted rectangles) form another hierarchy H2. Furthermore,
H := H1∪H2 is a bihierarchy since any constraint set (rectangle or singleton) belongs to exactly
one of H1 or H2.

0.6 0.4 0.4 0.6

0.4 0.6 0.6 0.4
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X
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A2

+ 0.4

0 1 0 1
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A3

Figure 2: Decomposition of a fractional proportional allocation X into integral Prop1 allocations
A1, A2, and A3. The underlying fair division instance comprises of four goods and two agents with
valuations v1,1 = 10, v1,2 = 6, v1,3 = 4, v1,4 = 2 and v2,1 = 2, v2,2 = 10, v2,3 = 6, v2,4 = 4.

Budish et al. [23] showed that bihierarchy constraint structure is a sufficient condition for a
fractional allocation to admit a feasible implementation. We recall this result in Proposition 8.

Proposition 8 ([23]). Given a fractional allocation X satisfying a bihierarchy constraint struc-
ture H, one can compute, in strongly polynomial time, a set of coefficients p1, . . . , p` ∈ [0, 1] and

integral allocations A1, . . . , A` such that (a)
∑`

k=1 p
k = 1, (b) each Ak satisfies the constraints

in H, and (c) X =
∑`

k=1 p
kAk.

Observe that the well-known Birkhoff-von Neumann theorem is a special case of Proposition 8
whenH1 consists of all singleton as well as row constraints, H2 consists of all column constraints,
and the lower and upper quotas for each constraint set are 0 and 1, respectively. It is worth
pointing out that while Budish et al. [23] only note a polynomial running time, it is easy to
check that their (combinatorial) algorithm, in fact, runs in strongly polynomial time.

Budish et al. [23] use Proposition 8 to establish the utility guarantee (Proposition 4).

10.3 Proof of Lemma 3

Recall the statement of Lemma 3.

Lemma 3 (Utility Guarantee++). Given a fractional allocation X, one can compute, in
strongly polynomial time, a randomized allocation implementing X whose support consists of
integral allocations A1, . . . , A` such that for every k ∈ [`] and every agent i ∈ N , the following
hold:

1. If vi(A
k
i ) < vi(Xi), then ∃ g−i /∈ Ak

i with Xi,g−i
> 0 such that vi(A

k
i ) + vi(g

−
i ) > vi(Xi).

2. If vi(A
k
i ) > vi(Xi), then ∃ g+i ∈ Ak

i with Xi,g+
i
< 1 such that vi(A

k
i )− vi(g+i ) < vi(Xi).

Proof. Proof. In their proof of Proposition 4, Budish et al. [23] propose the following method
for computing an implementation of a given fractional allocation X. Consider a fixed agent
i ∈ N . Suppose the goods in M are indexed as gi,1, . . . , gi,m so that vi(gi,k) ≥ vi(gi,k+1) for
each k ∈ [m− 1]. For simplicity, we will write vi,k :− vi(gi,k) for all k ∈ [m] and vi,m+1 :− 0.

For any i ∈ N and any k ∈ [m], define Qi,k :=
∑k

t=1Xi,gi,t as the total fractional amount of
the k most preferred goods assigned to agent i under X. Consider the following set of constraints
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on a generic fractional allocation Y :

H1 : bQi,kc ≤
k∑

t=1

Yi,gi,t ≤ dQi,ke, ∀i ∈ N and ∀k ∈ [m],

H2 :
∑
i∈N

Yi,g = 1, ∀g ∈M.

(4)

Observe that X trivially satisfies these constraints. Budish et al. show that these constraints
have the so-called “bihierarchy” structure (refer to Section 10.2 for a formal definition), which
allows computing, in strongly polynomial time, an implementation of X whose support consists
of integral allocations A1, . . . , A` that also satisfy these constraints.

Lastly, Budish et al. show that any integral allocation satisfying the constraints in Equa-
tion (4) must satisfy the guarantee in Proposition 4. We show that it in fact satisfies the slightly

stronger guarantee that we seek. For simplicity, let us write Â to denote a generic integral al-
location satisfying the constraints in Equation (4), and Q̂i,k :=

∑k
t=1 Âi,gi,t for all i ∈ N and

k ∈ [m].

Let us first analyze the case where vi(Âi) < vi(Xi). Then, there must exist some good g ∈M
such that Âi,g < Xi,g. Since Âi,g ∈ {0, 1} and Xi,g ∈ [0, 1], this is equivalent to Âi,g = 0 < Xi,g.

Let k− be the smallest index such that Âi,gi,k−
< Xi,gi,k−

, i.e., gi,k− is agent i’s most preferred

good satisfying this condition. Hence, gi,k− /∈ Âi and Xi,gi,k−
> 0. Further, for all k < k−, we

have Âi,gi,k ≥ Xi,gi,k , and, as a result, Q̂i,k ≥ Qi,k. Thus,

vi(Xi)− vi(Âi) =

m∑
k=1

vi,k · (Xi,gi,k − Âi,gi,k) =

m∑
k=1

(vi,k − vi,k+1) · (Qi,k − Q̂i,k)

≤
m∑

k=k−

(vi,k − vi,k+1) · (Qi,k − Q̂i,k) <

m∑
k=k−

(vi,k − vi,k+1) · 1 = vi,k− ,

where the second transition is a simple algebraic exercise, the third transition holds because we
noted that Q̂i,k ≥ Qi,k for all k < k−, and the fourth transition holds because Â satisfies H1 in

Equation (4), and therefore, we have that Qi,k − Q̂i,k ≤ Qi,k − bQi,kc < 1. Taking g−i := gi,k− ,

we notice that this is the guarantee we desire when vi(Âi) < vi(Xi).

Next, consider the other case where vi(Âi) > vi(Xi). Then, there must exist some good

g ∈ M such that Âi,g > Xi,g. Note that this is equivalent to Âi,g = 1 > Xi,g. Let k+ be

the smallest index such that gi,k+ satisfies this condition. Then, we have that gi,k+ ∈ Âi,

Xi,gi,k+ < 1, and by an argument similar to the one above, vi(Âi) − vi(Xi) < vi,k+ . Hence, in

this case, we can take g+i := gi,k+ , as desired.

11 Omitted Material from Section 6

11.1 Proof of Proposition 5

Recall the statement of Proposition 5.

Proposition 5. The fractional MNW rule satisfies replication invariance.

Proof. Proof. Suppose that it violates replication invariance. That is, for some instance I =
(N,M, (vi)i∈N ) and k ∈ N, there exists a fractional allocation Y ∈ MNW(I) = arg maxX∈X

∏
i∈N vi(Xi)

such that kY 6∈ MNW(kI). For an agent i ∈ N and ` ∈ [k], let i` denote the `th copy of agent i
in the replicated instance kI. Then, there exists an allocation Z on kI such that

Πi∈NΠk
`=1vi(Zi`) > Πi∈NΠk

`=1vi(Yi).
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For every i ∈ N and ` ∈ [k], let Z ′i` := Z ′i :=
∑k

`′=1
Zi

`′
k . That is, Z ′ takes the total allocation

to all copies of i and distributes it evenly across the copies so that each copy of agent i receives
Z ′i. Because valuations are additive and each copy of i has the same valuation function, it can
be seen that the Nash Welfare of Z ′ is at least as large as that of Z. That is,

Πi∈NΠk
`=1vi(Z

′
i) ≥ Πi∈NΠk

`=1vi(Zi`) > Πi∈NΠk
`=1vi(Yi)⇒ Πi∈Nvi(Z

′
i) > Πi∈Nvi(Yi),

which contradicts the fact that Y ∈MNW (I).

11.2 Proof of Lemma 4

Recall the statement of Lemma 4.

Lemma 4. For every instance I, and every Pareto optimal allocation A 6∈ MNW(I), there
exists a pair of agents i, j and X ⊆ Ai with vi(X) ∈ (0, vi(Ai)) and vj(X) > 0, such that

vj(X) > vj(Aj) ·
vi(X)

vi(Ai \X)
. (2)

Proof. Proof. Let Z ∈ MNW(I) and let U = {i ∈ N : vi(Ai) > vi(Zi)} be the set of agents
with more utility in allocation A than in Z. First, we claim that there exist agents i ∈ U and
j 6∈ U with Ai ∩ Zj 6= ∅. If this were not the case, then ∪i∈UAi = ∪i∈UZi. Further, since
A /∈ MNW(I), there exists an agent h with vh(Ah) 6= vh(Zh). And since A is Pareto optimal,
we must have that U 6= ∅. Hence, the allocation B with Bi = Ai for every i ∈ U and Bi = Zi

for every i 6∈ U has strictly higher Nash welfare than Z, a contradiction.
Fix agents i ∈ U and j /∈ U such that Ai ∩ Zj 6= ∅. Let X = ε · (Ai ∩ Zj), where ε > 0 is

small enough that

vi(Ai \X)

vi(Zi)
>

vj(Aj)

vj(Zj \X)
, vi(X) ∈ (0, vi(Ai)), and vj(X) ∈ (0, vj(Zj)). (5)

It is possible to choose such an ε because the first inequality in Equation (5) holds for ε = 0
and both sides are continuous in ε. Further, we know that vi(X) > 0 by Pareto optimality of
A, and that vj(X) > 0 by Pareto optimality of Z.

We also know, by the definition of a fractional MNW allocation, that

vj(X)

vj(Zj \X)
≥ vi(X)

vi(Zi)
. (6)

Multiplying the left and right hand sides of the inequalities in Equations (5) and (6) gives the
desired result.

11.3 Maximum Nash Welfare Variant

Relaxing group fairness. We now present a replication-invariant allocation rule that is
not a refinement of MNW. As a consequence of Theorem 5, it therefore fails group fairness.
However, we show that it satifies a relaxation of group fairness that still generalizes many of the
fairness properties common in the literature.

Say that good g is a weak good if there exists only a single agent with vi(g) > 0. Otherwise,
we say that g is a strong good. Let Wi = {g ∈M : vj(g) = 0 ∀j 6= i} denote the set of all weak
goods valued positively by agent i.

Mechanism Maximum Nash Welfare Variant (MNW-V) works as follows. Given an instance
I, let I−W denote the instance with weak goods removed. Then MNW-V(I)i = MNW (I−W )i∪
Wi. That is, we begin by allocating only the strong goods according to MNW. We then allocate
to each agent the weak goods that she values positively.
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Example 3. Suppose there are three agents and two goods, g and g∗, with v1(g) = v2(g) =
v3(g) = 1 and v1(g∗) = 1 and v2(g∗) = v3(g∗) = 0. Note that g is a strong good and g∗ is a
weak good, valued only by agent 1. MNW allocates agents 1 and 2 half of g each, and all of g∗

to agent 3. MNW-V, on the other hand, allocates each agent a 1/3 share of good g, and all of
g∗ to agent 3. Note that MNWV does not satisfy group fairness. If we let S = N and T consist
only of agent 3, then we can partition agent 3’s bundle so that B1 = B2 = 1

6g, and B3 = g∗, for
utilities v1(B1) = v2(B2) = 1/6 and v3(B3) = 1. When these utilities are scaled by a factor of
|S|/|T | = 3, each agent is strictly happier than under the original MNW-V allocation.

The above example shows that MNW-V violates group fairness. But we can show that the
allocation is fair to any group S provided that S is small relative to group T . We formalize this
using the following property.

Definition 18. An allocation X is group fair for less if for all non-empty subsets of agents
S, T ⊆ N with |S| ≤ |T |, there is no allocation Y of the set of goods ∪i∈TXi among agents in

S such that |S||T | · vi(Yi) ≥ vi(Xi) for all agents i ∈ S and at least one inequality is strict.

In particular, group fairness for less generalizes proportionality, envy-freeness, Pareto opti-
mality, group envy-freeness [13, 47], and the core [42].

We show that MNW-V satisfies group fairness for less. As a consequence, a characterization
of MNW in the additive utility setting therefore seems to require the full power of group fairness.

Theorem 9. MNW-V satisfies group fairness for less.

Proof. Proof. Denote the MNW-V allocation on some instance I by A, and fix sets S and T with
|S| ≤ |T |. Since we know that MNW is group fair, for every partition (Bi)i∈S of ∪i∈T (Ai\Wi),
we have either

|S|
|T |
· vi(Bi) < vi(Ai\Wi) (7)

for some i ∈ S, or
|S|
|T |
· vi(Bi) = vi(Ai\Wi) (8)

for all i ∈ S.
Fix a partition (Ci)i∈S of ∪i∈TAi, and for every i ∈ S denote by Bi the intersection of Ci

with the set of strong goods. (Bi)i∈S is a partition of ∪i∈T (Ai\Wi), so we must be in one of the
two cases above. Suppose we are in the first, with witness agent i. If i ∈ T , then Ci ⊆ Bi ∪Wi

and we have

|S|
|T |
· vi(Ci) ≤

|S|
|T |
· vi(Bi) +

|S|
|T |
· vi(Wi) < vi(Ai\Wi) + vi(Wi) = vi(Ai),

where the strict inequality follows from Equation 7. If i 6∈ T , then vi(Ci) = vi(Bi) (since no
goods from Wi are contained in ∪i∈TAi), and we have

|S|
|T |
· vi(Ci) =

|S|
|T |
· vi(Bi) < vi(Ai\Wi) ≤ vi(Ai).

In both cases, group fairness holds with respect to sets S and T .
A similar argument can be used if we are in the case corresponding to Equation 8, with the

relevant strict inequalities replaced by equalities.
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11.4 Fractional Group Fairness Characterizes MNW

We now show that the dependence on replication invariance can be removed from Theorem 5 if
group fairness is strengthened to fractional group fairness. Intuitively, fractional group fairness
extends group fairness to hold even for groups of agents that may consist of (hypothetical)
fractional agents. Denote a fractional subset of agents S = (xSi )i∈N , where xSi ∈ [0, 1] denotes
the fraction of agent i that is included in S. Define |S| =

∑
i∈N xSi .

Definition 19 (Fractional Group Fairness (FGF)). An allocation X is fractionally group fair
if for all fractional subsets of agents S, T ⊆ N with |T | 6= 0, there is no allocation Y of the set

of goods ∪jxTj Xj among all agents such that |S||T | · vi(Yi) ≥ xSi · vi(Xi) for all agents i ∈ N and

the inequality is strict for at least one i ∈ N with xSi > 0.

Note that we recover group fairness (Definition 6) as a special case of FGF by restricting to
the subsets S and T with xSi ∈ {0, 1} and xTi ∈ {0, 1} for all i ∈ N .

When we strengthen group fairness to fractional group fairness, we obtain a characterization
of MNW that does not require replication invariance.

Theorem 10. Any allocation rule that satisfies fractional group fairness must be a refinement
of MNW.

Proof. Proof. The proof proceeds in a similar manner to the proof of Theorem 5. Let f be an
allocation rule, and suppose that there exists an instance I for which there exists an allocation
A ∈ f(I) but A 6∈ MNW (I). If A is not Pareto optimal then it violates group fairness. So
suppose A is Pareto optimal.

By Lemma 4, there exist agents i, j and X ⊆ Ai with vi(X) ∈ (0, vi(Ai)) and vj(X) > 0
such that

vj(X) > vj(Aj) ·
vi(X)

vi(Ai −X)
. (9)

Let T = {i} (that is, xTi = 1 and xTk = 0 for all k 6= i) and S = {i} ∪ { vi(X)
vi(Ai−X)j} (that is,

xSi = 1, xSj = vi(X)
vi(Ai−X) , and xSk = 0 otherwise). Let Bi = Ai −X and Bj = X. Then

|S|
|T |
· vi(Bi) =

(
1 +

vi(X)

vi(Ai −X)

)
· vi(Ai −X) = vi(Ai −X) + vi(X) = xTi · vi(Ai)

and

|S|
|T |
· vj(Bj) ·

1

xSj
=

(
1 +

vi(X)

vi(Ai −X)

)
· vi(Ai −X)

vi(X)
· vj(X)

=
vi(Ai)

vi(X)
· vj(X) >

vi(Ai −X)

vi(X)
· vj(X) > vj(Aj),

where the final inequality follows from Inequality 9. Fractional group fairness is violated.

As a consequence of Theorem 10 and Proposition 7, we know that the set of Maximum Nash
Welfare allocations coincides exactly with the set of fractionally group fair allocations. We note
that such a statement does not hold if we use only the more permissive axiom of group fairness.

Example 4. Consider an allocation problem with two goods and two agents. We have v1(g1) =
v2(g2) = 1, and v1(g2) = v2(g1) = ε for some small ε > 0. The only MNW allocation is to
assign g1 to agent 1 and g2 to agent 2. But consider allocation A that sets A1 = g1 + 1

3g2 and
A2 = 2

3g2. It is easy to check that A is group fair despite not being an MNW allocation.
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12 Omitted Material from Section 7

12.1 Proof of Proposition 6

Recall the statement of Proposition 6.

Proposition 6. For additive valuation functions over bads, recursive probabilistic serial (RPS)
and its polynomial-time variant from Section 3.2 produce randomized allocations that are ex-ante
envy-free (EF) and ex-post envy-free up to two bads (EF2).

Proof. Proof. The reason why the randomized allocation produced by both algorithms is ex-
ante EF is the same as in the case of goods. In each step t, the fractional allocation Xt produced
by the Eating procedure is envy-free because agents are forced to eat bads at the same rate and
an agent is always eating a bad that she prefers the most among all bads not fully consumed.
Since each Xt is envy-free, a probability distribution over all Xt-s in different branches is also
envy-free. Hence, the expected fractional allocation induced in step t is envy-free for each t.
Hence, the overall fractional allocation, which is the sum of fractional allocations induced in all
rounds, is also envy-free.

For ex-post EF2, let A be an integral allocation produced by RPS (or its polynomial-time
variant). We notice that Lemma 1 still holds for the case of bads. That is, for t < dm/ne, if
bi,t denotes the bad allocated to agent i in iteration t, then agent i (weakly) prefers bi,t to all
bads in M t+1 (bads unallocated after t iterations of the algorithm). Now, when t < bm/nc, we
know that another agent j must receive a bad in round t + 1 ≤ bm/nc. Hence, for all agents
i, j ∈ N and all t < bm/nc, we have vi(bi,t) ≥ vi(bj,t+1). Summing over t < bm/nc, we get
vi({bi,t : 1 ≤ t < bm/nc}) ≥ vi({bj,t : 2 ≤ t ≤ bm/nc}) ≥ vi(Aj). Note that in the LHS,
there are at most two bads missing from Ai: the bad allocated to agent i in round bm/nc,
and a bad which may be allocated to agent i in the final round dm/ne. Hence, we have that
vi(Ai \ Si) ≥ vi(Aj) for some Si ⊆ Ai with |Si| ≤ 2.

12.2 Proof of Theorem 8

Recall the statement of Theorem 8.

Theorem 8. For additive valuation functions over bads, there is a strongly polynomial-time
algorithm that, given any fractional proportional (Prop) allocation as input, computes an im-
plementation of it using integral allocations that are proportional up to one bad (Prop1). If, in
addition, the input is a fractional CEEI allocation, then the integral allocations in the support
also satisfy envy-freeness up to one bad more-and-less (EF1

1).

Proof. Proof. Given an instance I = (N,M, (vi)i∈N ) of bad division, let us define the corre-

sponding instance of good division as Î = (N,M, (v̂i)i∈N ) of good division, where v̂i = −vi.
Given a fractional allocation X of I, we treat it as an allocation of instance Î, and apply Lemma 3
to find an implementation of X. Let A1, . . . , A` be integral allocations in its support. Note that
the ‘reduction’ to goods is used only for the decomposition step, and not for constructing the
relevant fractional allocation.

First, suppose X is Prop under I. We want to show that for each k ∈ [`], Ak is Prop1
under I. Since X is proportional, for every i ∈ N , v̂i(Xi) ≤ v̂i(~1

m)/n, where v̂i(~1
m) is agent

i’s valuation for receiving all “goods” fully. Fix k ∈ [`]. By Lemma 3, we have that for every
agent i ∈ N , either v̂i(A

k
i ) ≤ v̂i(Xi) ≤ v̂i(~1

m)/n, or there exists a bad r ∈ Ak
i such that

v̂i(A
k
i ) − v̂i,r < v̂i(Xi) ≤ v̂i(~1

m)/n. Therefore, Ak is Prop1 under I. Note that here, we are
using the second part of Lemma 3, whereas in the goods case, we used the first part to establish
Prop1.

Next, suppose that X is a fractional CEEI allocation under I. Since this allocation is envy-
free [17], and therefore proportional, the aforementioned argument still applies for ex-post Prop1
under I. We show that in this case, Ak is also EF1

1 under I for each k ∈ [`]. As mentioned
before, since X is a fractional CEEI allocation under I, Equation (3) holds. Fix a pair of distinct
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agents i, j ∈ N . By Lemma 3, either v̂i(A
k
i ) ≥ v̂i(Xi), or there exists b−i /∈ Ak

i with Xi,b−i
> 0

such that v̂i(A
k
i ∪ {b

−
i }) > v̂i(Xi). Similarly, either v̂j(A

k
j ) ≤ v̂j(Xj), or there exists b+j ∈ Ak

j

with Xj,b−j
< 1 such that v̂j(A

k
j \ {b

+
j }) < v̂j(Xj). To simplify the analysis like in the case of

goods, let us assume that the second condition holds in both cases.
By summing the right-hand side inequality in Equation (3) over all b ∈ Ak

i ∪ {b
−
i }, we get

v̂j(A
k
i ∪ {b

−
i })

v̂j(Xj)
≥ v̂i(A

k
i ∪ {b

−
i })

v̂i(Xi)
> 1.

Thus, v̂j(A
k
i ∪ {b

−
i }) > v̂j(Xj) > v̂j(A

k
j \ {b

+
j }), implying that vj(A

k
i ∪ {b

−
i }) < vj(Xj) <

vj(A
k
j \ {b

+
j }), and Ak satisfies EF1

1, as desired.
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